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Supporting information

S1 Appendix. This Supporting Information file is organized as follows. First, we
define the random estimator under consideration. This is followed by a primary result
of the paper, in which we precisely define the conditions under which this random
estimator incurs less mean squared error than sample means. The remainder of the
Supporting Information is devoted to a full proof, complete with auxiliary definitions
and derivations.

DEFINITION 1. Let y;,i € {1,2,...,p}, be a set of p-many independent random
variables with corresponding population means, u;,7 € {1,2,...,p}, and variance o2.
Assume that p > 2. Assume n many independent and identical draws from each

yi,t € {1,2,...,p}. Let a;,i € {1,2,...,p}, be a set of weights obtained from
independent (continuous) uniform random draws over the closed interval [—1,1].
Following standard “effect” notation [?], we will work with the difference between each
sample mean and the overall grand mean, i.e., let a; = 7, — G where 7, is the usual
sample mean for the i*" group, and G is the observed grand mean, defined and
calculated in the usual way from the experimental data. Our random estimator is
defined as follows:

) ~Vrlp -1 ¢ :
/‘;eaz< Zalal +G 26{172""’]7}'
Vil a;

PROOF OF PROPOSITION 1. As an intermediary step to proving the Main Result, we will
first consider an estimator that is the least-squares solution for the scaling factor, b (see (77)),
subject to the random constraints implied by the weights a;,7 € {1,2,...,p}, and solve for its
mean squared error. This random least squares estimator is defined as follows:

‘a;_rnd (|a|| Zazaz> +G, i€ {1,2,...,p}. (1)
Mean squared error is defined as B (i — wi)?], where fi; is an estimator of ;. We prove
~rnd 2

the result by deriving E[> 7 (@™ — ul) ] and solving the inequality
EP (05 — wi)?] < E[X-P_, (§; — ps)?]. To simplify notation, and without loss of generality,
we assume that ||a|| = 1.

Recall that for any estimator, B[P (4 — )] = 0, Var(fis) + 3P, (Blfi] — wi)?,
where Var(fi;) denotes the variance of ji;. Solving for Z Var( ) we obtain,

ZVar ) = 3 (B - (B )?)

i=1

November 14, 2018

1/77

22

23

24

25

26

27



=1 =1 =1 =1 pifl =1 p i=1
= (E[az O aiw, % D0+ Bl2ai(}_ai(d, L *))(% >+ El O 5)7
uio 20p—1) (p—1)? >
e o uz(;uz) o (;uz) )
- <E[az<zm(y S+ B a— 5 S IG Y w6 S )
wo2p=1) o~ (p—
i _ 2o M; » >
Since ) )
_1 B[2ai( ai(y; — f:ly))(% =1 Uil = ZTL"‘(% 1 Ni)Q_ZTL_(% 1 pi)* =0,

We can further snnphfy and carry out summation,

ZV“T ! (E[Za?(zai(yi - ;Zy)ﬁ) Tt Z# - Z%Z“?'

Since 3°F_ af =1,

ZV(U‘ (™) <E[(Za7(yz - ;Z?J))ﬂ) + % + I%(ZM)Q - Z%ZH?

Since a; is uncorrelated with aj, (i # j), and all a;,i € {1,2,...,p} values are pairwise
independent of g,,¢ € {1,2,...,p}, we obtain,

o2 P P
ZVar (™) (ZE yszzyl > +%(Zui)2*§21ﬁ,
i=1 i=1
_l I£2+(i 2)_‘7:_1(17 )2 z _ =
- n .uz n p ;l“) + + Z/’L’L Z,u7,7

p i=1

_@p-1c*  (p—1)
=t (Z Z’“ )
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Next, we solve for the sum of squared bias term, > 7_ (E[”""d] u;)?. We obtain,

SOEE™ - ) —Z(‘MM(ZM—M) ,

2
=1 i=1 p p i=1

= - P

Combining terms gives the following mean squared error value,

P

B (@ — )] = Z Var (™) + Z (BIA™) = s)® =
=1
(2p—1)0®  (p—1)
+ i) — — pi)?
o ; Z Z
which completes the proof of this intermediary step. 0.
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Building upon the general idea of shrinkage estimation, we consider the random least
squares estimator with the first term multiplied by a fixed scalar value, k, which will function
as our shrinkage parameter (recall we set ||a|| = 1),

p
ﬂzk:ai <Zabo¢1>k+G, iE{l,Q,...,p}, (2)
i=1

where k € [0, 1]. To clarify, k is a variable we are introducing for the purposes of deriving our
benchmark estimator defined in Definition 1 and (??). Clearly, when k = 1 the estimator
defined in Equation (??) is the random least squares estimator, likewise, when k = 0 the
estimator is simply the grand mean. Following the above proof for the mean squared error of
the random least squares estimator, it is routine to show that the mean squared error for the
estimator defined in Equation (?7?) is equal to the following:

MSEy (k) = T =D ED) | (o= 2R 10) <(Zuf) - ;@m)z). 3)

pn p i=1

Similarly, it is routine to show that the estimator defined in Equation (?7) incurs less mean
squared error than the vector of sample means if, and only if,

(p—D(p—Fk
p(p+ (k= 2)k) f?

We can consider the right-hand side of Inequality (??) as a polynomial in k. We solve for the
unique value of k, k € [0, 1], that maximizes the right-hand side of Inequality (??), following

the usual method of taking the derivative of z(k) := mf’;::}z and solving z(k)’ = 0. After

checking the usual optimality conditions, we obtain k = p — \/p(p — 1). Substituting this value
into Equation (?7?), we obtain the random estimator defined in Definition 1 and (??). The
random estimator incurs less mean squared error than the vector of sample means if, and only
if,

n <

(4)

P P

B[y (A" — )] < E[Y_ (@ — mi)’)],

i=1 i=1

o*(p+ (p—1)(p — /P> —p)?) po’

= p +2f**(p =) — VP —p) <= -,
= 2f%°(p-1D)p—- VP> —p < p;f B D;i_ my),
— 2D Vi p) < 02(p2—p—(p—p1n)(p—\/p27—p)2)’
= 2% 0p-1)p-Vp*—p) < 02(721)3+4p2721;2(p27p)m),
= - o- Vi) < 2DV p o))
T p—(p—1
A
—= n< 717;1}; 1),

which completes the proof. L.
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